Distributed Systems

academic year 2004/05

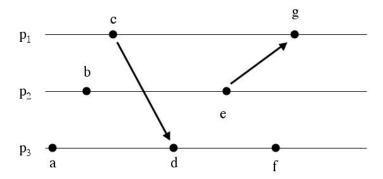
Question Give a definition of heterogeneity, explain why it is important to consider in the context of a distributed system and provide an example.

Question What is the difference between a thin client and the use of mobile code (e.g., a Java Applet). What are the advantages and drawbacks of each approach?
Question Why is marshalling and unmarshalling necessary for interprocess communication? Give an
example of a marshalling.

Question	n What is the role of the skeleton in the Remote Method Invocation archit	ecture?
Question	n A remote object reference is composed of the following fields	
	Internet address port number time object number interface of n	remote object
Exp	xplain what is the role of each field in referencing a remote object.	

Question	In the NFS	file system,	why doe	s each	client r	nantain	s a table	of mo	unted fi	le systems	holding
the i	following in	formation?									

Internet address	port number	file handle


Question Does a DNS server hold all mappings between names and IP addresses? If yes, what happens when a server goes down? If not, how many interactions are necessary to resolve a name in the best and in the worst cases?

Question At the same real time instant 12/4/05 9.30.26.986 AM the reading of the clocks on two different machines are:

Machine 1	Machine 2
12/4/05 9.30.27.125	12/4/05 9.30.25.598

What is the clock skew? What would happen after external synchronization?

Question Given three processes p_1, p_2 and p_3 , events c, g occurring at p_1, b, e occurring at p_2 and a, d, f occurring at p_3 as depicted in the following figure, where real time flows from left to right and arrows represent message exchange

consider Lamport's logical clocks. Give all 'happened_before' relations between events. Say whether the following couple of events are parallel or not: a,b? f,g? b,g?

Question Does the Ring Algorithm for distributed mutual exclusion satisfy the <i>safety</i> property? Do satisfy the <i>liveness/progress</i> property? Prove one of the two answers.	es it
Question Give an example involving at least two processes showing that total order is a stronger prop	erty
Question Give an example involving at least two processes showing that total order is a stronger properties than casual ordering in the case of multicast communication.	perty
Question Give an example involving at least two processes showing that total order is a stronger properties than casual ordering in the case of multicast communication.	perty
Question Give an example involving at least two processes showing that total order is a stronger properties than casual ordering in the case of multicast communication.	perty
Question Give an example involving at least two processes showing that total order is a stronger properties than casual ordering in the case of multicast communication.	perty
Question Give an example involving at least two processes showing that total order is a stronger propertion casual ordering in the case of multicast communication.	perty
Question Give an example involving at least two processes showing that total order is a stronger properties than casual ordering in the case of multicast communication.	perty